
Parallelizing CBS
High & Low Level Parallelization

Matthew Booker, Jaekyung Song

Multi-Agent Path Finding (MAPF) Approach 1 - Parallel Low Level Search Results

Conflict Based Search [1,2]

References

[1] G. Sharon, R. Stern, A. Felner, N. R. Sturtevant, ”Conflict-based search for optimal multi-agent 
pathfinding”, Artificial Intelligence, Volume 219, 2015, Pages 40-66, 
https://doi.org/10.1016/j.artint.2014.11.006.
[2] Jiaoyang Li., CMU 16-891: Multi-robot Planning and Coordination
[3] Kishimoto, A., Fukunaga, A., Botea, A. (2009). Scalable, Parallel Best-First Search for Optimal 
Sequential Planning. Proceedings of the International Conference on Automated Planning and 
Scheduling, 19(1), 201-208. https://doi.org/10.1609/icaps.v19i1.13350

15-618: Parallel Computer Architecture and Programming

● Two level algorithm used to solve MAPF 
problems

● Low level uses A* for Single Agent Path 
Finding

● High level uses a binary search tree to 
select conflicts and solve for the optimal 
solution.

● Nodes in Constraint Tree are independent
● Allows distributing nodes across cores
● Process initial few nodes sequentially until 

enough exist to spread across cores evenly.

Major Challenge

Approach 2 - Parallel High Level Search

Given N agents, each with a start and goal 
position, the task is to find a path through 
the environment for each agent that is 
robot-robot and robot-obstacle collision 
free with minimum cost i.e. sum of lengths 
of all paths

● Average relative speedup of 2.23x with a 
maximum of 6.18x

● Average speedup of runtimes over 1s is 4.83x
● Overhead of parallelization leads to poor 

speedup for simple MAPF instances

Parallel High Level

Parallel Low Level

Maps used for testing & evaluation

● Implementation of Hash Distributed A* [3]
● Use hashing function to distribute neighbors of 

expanded nodes to multiple cores
● Use buffers to reduce contention as processors 

push to each other’s open lists
● Partition visited list to allow parallel access and 

modification
● Search terminates when all open lists and 

buffers are empty

● HDA* yielded 20% average speedup
● Overhead visualization for 8 cores shows high 

synchronization and contention inefficiencies

● CBS and A* use best first search and 
only consider a single node at a time

● Sequential nature gives very powerful 
properties: completeness and optimality

● Care must be taken to preserve these 
properties during parallelization

● Detecting termination is difficult as all 
cores must agree that termination should 
occur


