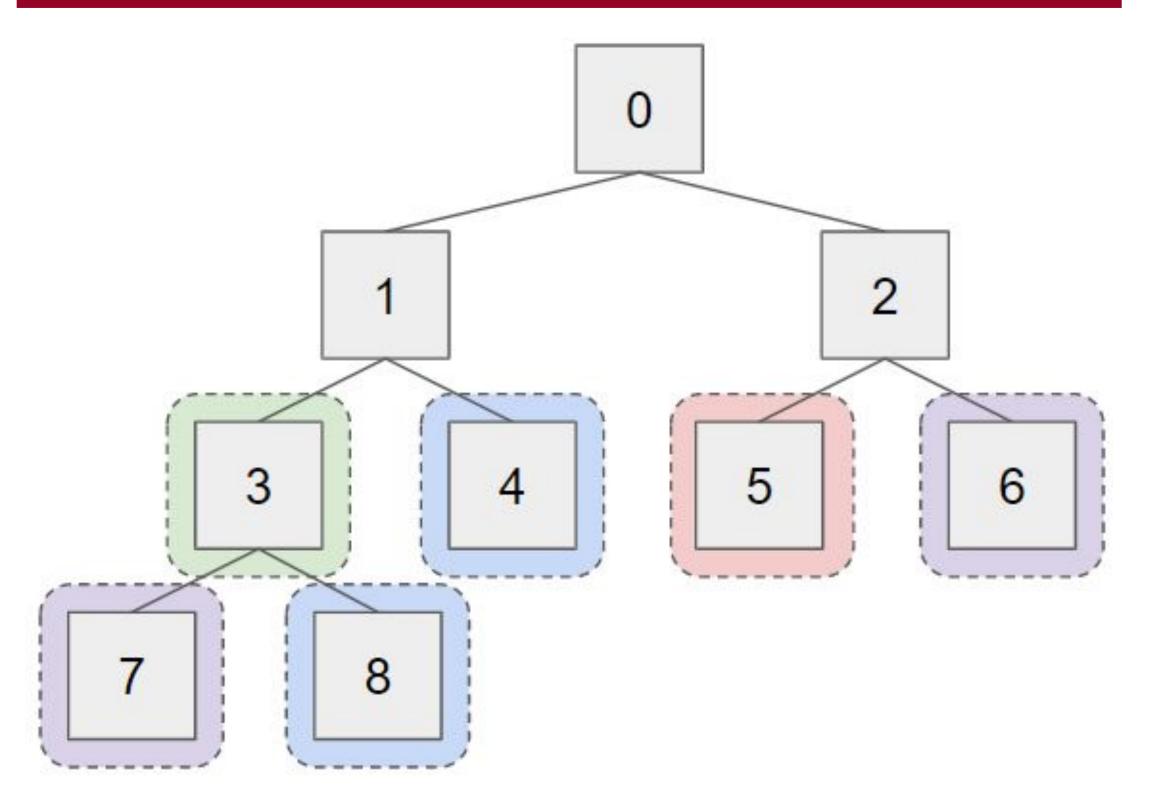

Parallelizing CBS High & Low Level Parallelization

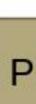
Matthew Booker, Jaekyung Song

Multi-Agent Path Finding (MAPF)

Given N agents, each with a start and goal position, the task is to find a path through the environment for each agent that is robot-robot and robot-obstacle collision free with minimum cost i.e. sum of lengths of all paths


Conflict Based Search [1,2]

- Two level algorithm used to solve MAPF problems
- Low level uses A* for Single Agent Path Finding
- High level uses a binary search tree to select conflicts and solve for the optimal solution.


Major Challenge

- CBS and A* use best first search and only consider a single node at a time
- Sequential nature gives very powerful properties: completeness and optimality
- Care must be taken to preserve these properties during parallelization
- Detecting termination is difficult as all cores must agree that termination should occur

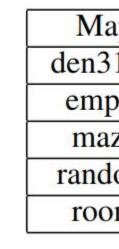
Approach 1 - Parallel Low Level Search Visited list Open lists P Р P0 0 P P P1 P Р **P2** P Ρ **P3** 3 Implementation of Hash Distributed A* [3]

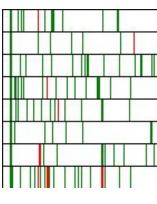
• Use hashing function to distribute neighbors of expanded nodes to multiple cores

• Use buffers to reduce contention as processors push to each other's open lists

• Partition visited list to allow parallel access and modification

Search terminates when all open lists and buffers are empty


Approach 2 - Parallel High Level Search


• Nodes in Constraint Tree are independent • Allows distributing nodes across cores Process initial few nodes sequentially until enough exist to spread across cores evenly.

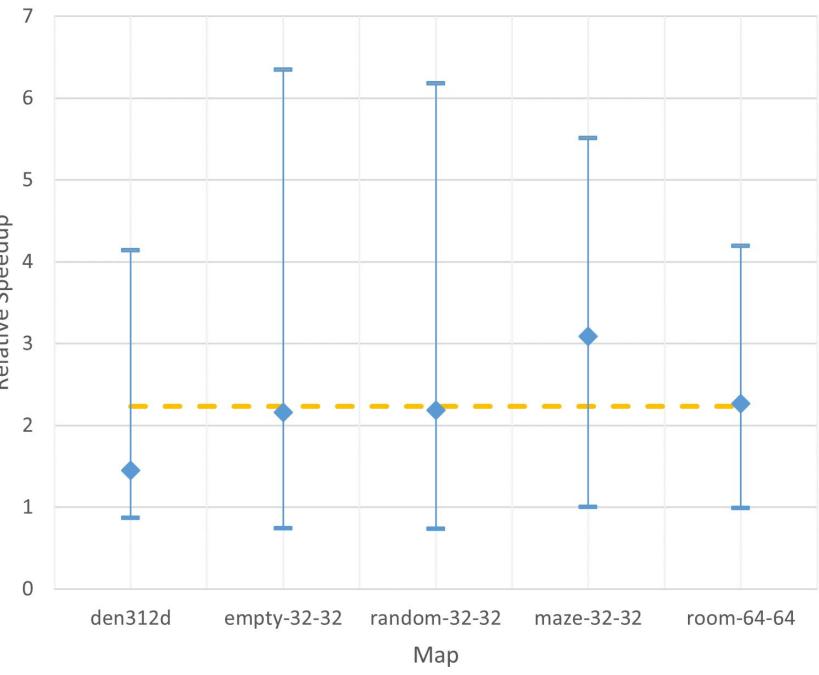
Results

Parallel Low Level

• HDA* yielded 20% average speedup Overhead visualization for 8 cores shows high synchronization and contention inefficiencies

References

15-618: Parallel Computer Architecture and Programming


|--|--|--|--|

Maps used for testing & evaluation

ap	A* runtime (ms)	HDA* runtime (ms)	Speedup
12d	237.1	212.2	1.12
pty	24.9	16.6	1.51
ze	580.8	502.1	1.16
lom	19.5	16.5	1.18
m	592.3	598.0	0.99

															100									
					1													11			- 14		11	
				Γ				Π		7.0						1		60 B						
							Γ						Π						Π					
					Π																			
Π	Π										Π	Π					1		T				Π	
T							Π	Π								T						11		
				T																				

Parallel High Level

• Average relative speedup of 2.23x with a maximum of 6.18x

• Average speedup of runtimes over 1s is 4.83x • Overhead of parallelization leads to poor speedup for simple MAPF instances

[1] G. Sharon, R. Stern, A. Felner, N. R. Sturtevant, "Conflict-based search for optimal multi-agent pathfinding", Artificial Intelligence, Volume 219, 2015, Pages 40-66, https://doi.org/10.1016/j.artint.2014.11.006.

[2] Jiaoyang Li., CMU 16-891: Multi-robot Planning and Coordination

[3] Kishimoto, A., Fukunaga, A., Botea, A. (2009). Scalable, Parallel Best-First Search for Optimal Sequential Planning. Proceedings of the International Conference on Automated Planning and Scheduling, 19(1), 201-208. https://doi.org/10.1609/icaps.v19i1.13350