
More Robots and More Cores: Parallelizing the
CBS Algorithm

Jaekyung Song
Robotics Institute

Carnegie Mellon University

Matthew Booker
Robotics Institute

Carnegie Mellon University

I. URL TO PROJECT PAGE

https://jsongcmu.github.io/parallel CBS/

II. SUMMARY

We took two approaches to parallelize a popular Multi-
Agent Path Finding algorithm named CBS. Our low level ap-
proach showed speedups between 0.3 - 1.3x over a sequential
method while our high level approach showed speedups up to
6.2x. Our analysis was performed on the GHC machines and
showed that the nature of the problem was a large factor in
the performance of our parallel method.

III. BACKGROUND

A. Overview of MAPF

In the MAPF problem, we are given a graph G(V, E), and
a set of N agents. Each agent has a start and goal position
si, gi ∈ V and the task is to find a path through G for each
agent from its start to its goal without conflicting with other
agents while minimizing a cost function. At a given timestep,
an agent may traverse an edge or remain at its current vertex.
In our case, the cost function we aim to minimize is the
makespan, which is the sum of the lengths of paths of all
agents.

B. Conflict-based Search

Conflict-based Search (CBS) [1] is an algorithm used for
solving the Multi-Agent Path Finding (MAPF) problem. The
algorithm consists of two levels. At the bottom level, it utilizes
the A* algorithm to find paths for individual agents, solving a
Single-Agent Path Finding (SAPF) problem. At the top level,
it creates a binary tree, known as the Constraint Tree (CT),
that is used to select which collisions to resolve amongst
the agents. The root of this tree contains an instance of the
problem where all agents naively plan a shortest path to their
goal. If no collisions occur in this instance, then the problem is
solved. Otherwise, the first collision between any two agents
is selected and two subtrees are created. One subtree contains
the same problem instance but prevents the first agent from
being at the collision location at the collision timestep, and
the second subtree is identical but prevents the second agent
from being at the collision location at the collision timestep.
One important property of CBS is that it is guaranteed to find
the optimal solution if it exists. Figure 1 gives a visualization
of the Constraint Tree.

Fig. 1: A visualization of three levels of the Constraint Tree
[2]

Although there is a distinct separation between the high
level of CBS and its low level, A*, the two function very
similarly. Both use priority queues as the data structure for
the open list to ensure a best-first search. The algorithm for
the high level is given in Algorithm 1 and for A* is given in
Algorithm 2.

C. Hash Distributed A*

Hash Distributed A* (HDA*) [3] is an algorithm for paral-
lelizing single agent path finding. In A*, only a single node
is considered from the open list at a time, which prevents
parallelization. In HDA*, each processor has its own open list,
and expands it, computing the cost to get to that node from the
starting position. If the node has been expanded before and is
in the visited list, and if the new computed cost is lower, then
the node in the visited list is updated; otherwise it is discarded
and the processor grabs a new node from the open list. If the
node is not discarded, then its neighbors are computed. The
neighbors are then put through a hashing function to determine
which processor should get them; these nodes are then added
to the open list of those processors. This allows multiple nodes
to be processed in parallel, and each processor generates work
for every other processor. The algorithm is shown in Algorithm
3.

In A*, because only the most promising node in the open
list is expanded per iteration, when a node is expanded, the
shortest path to that node has been found. For this reason,
when the goal node is expanded, we can terminate the search
as the shortest path to the goal has been found. However,



Algorithm 1 High-level of CBS [1]

Input: MAPF Instance
1: R.constraints← ∅
2: R.solution←find individual paths using low-level()
3: R.cost← 0
4: Insert R into Open
5: while Open not empty do
6: P ← node from Open with lowest cost
7: Detect conflicts in P
8: if P has no conflict then
9: return P.solution

10: end if
11: C ← first conflict (ai, aj , v, t) in P
12: for each agent ai ∈ C do
13: A← new node
14: A.constraints← P.constraints+ (ai, s, t)
15: A.solution← P.solution
16: Update A.solution by invoking low-level(ai)
17: A.cost← Cost(A.solution)
18: Insert A into Open
19: end for
20: end while

Algorithm 2 A* Algorithm

Input: SAPF Instance
1: Open ← ∅
2: Visited ← ∅
3: R.position← start
4: Insert R into Open
5: while Open not empty do
6: C ← node from Open with lowest f-value
7: if C.position == goal then
8: return C
9: end if

10: C.closed← true
11: for each valid neighbor N of C do
12: if N is in Visited then
13: if N.closed then
14: continue
15: end if
16: if C.g + cost(C,N) < N.g then
17: N.g ← C.g + cost(C,N)
18: N.f ← N.g +N.h
19: N.parent← C
20: Insert N into Open
21: end if
22: else
23: Insert N into Visited
24: Insert N into Open
25: end if
26: end for
27: end while

in HDA*, multiple nodes are considered at once, so early
termination is not possible. Termination can only occur when
all open lists are empty. As a result, HDA* has more work it
must do, as it expands significantly more nodes and explores
more of the map than A*.

Algorithm 3 HDA* Algorithm [3]

Input: SAPF Instance
1: for each processor P do
2: Open[P ] ← ∅
3: end for
4: Visited ← ∅
5: R.position← start
6: H ← Hash(R)
7: Insert R into Open[H]
8: while all Open lists are not empty do
9: for each processor P , parallel, no wait do

10: C ← node from Open[P ] with lowest f-value
11: if C.pos is in Visited as C ′ then
12: if C.g < C ′.g then
13: C ′.g ← C.g
14: C ′.f ← C.f
15: C ′.parent← C.parent
16: else
17: continue
18: end if
19: else
20: Insert C into Visited
21: end if
22: for each neighbor N of C do
23: if N outside map or inside obstacle then
24: continue
25: end if
26: T ← hash(N )
27: Insert N into Open[T ]
28: end for
29: end for
30: end while

IV. APPROACH

In our approach, we chose to tackle the problem in two
different ways. In the first, we approach the problem by
tackling the low level search. Since the A* search takes the
most amount of time, we felt that parallelizing it would help
to improve runtime performance. In the second approach, we
use the fact that the CT nodes are independent to parallelize
the high-level search. In both cases, our implementation was
written in C++ to leverage OpenMP. We targeted running
on the GHC machines. Our code was written by us and
from scratch. Although, we had both implemented the CBS
algorithm as part of another class at CMU (16-891: Multi-
robot Planning and Coordination) it was implemented in
Python.



Fig. 2: Naive implementation of HDA*

A. Termination Criteria and Coordination

Before diving into the two separate approaches, it is impor-
tant to discuss a core idea that is central to both. The high-
level and low-level search’s have a similar structure and both
use priority queues for determining which node to expand
next. As a result, a core idea in both algorithms is that the
first time they encounter a node that satisfies the termination
criteria (e.g. node is at the end goal for A* or node has no
collisions for CBS) then they are guaranteed to have found
the optimal solution. However, as soon as we begin to add
parallelism this idea doesn’t hold as we no longer have a strict
ordering on which nodes are processed before one another.
Consider the following example, the true optimal solution
lies at node X . Processor A which is supposed to process
node X is taking a while to finish processing previous nodes.
Simultaneously, processor B is rapidly going through all its
nodes and eventually finds another node Y that also satisfies
the termination criteria. Node Y can either have equal or
higher cost than X . Thus, taking the first conflict free solution
results in potentially incorrect sub-optimal results. To remedy
this, we first note that A* (and by extension CBS) only works
on graphs whose edges are monotonically non-decreasing.
Simply put, this means that any time a node is expanded
its total cost must increase or stay the same compared to its
parent, it will never decrease. Following from this observation,
any valid solution found in parallel provides an upper bound
on the optimal cost. As such, we can discard any nodes
in the priority queues that have cost higher than the initial
solution. The search continues with any node that satisfies
the termination criteria and having lower cost replacing the
previous solution. Once all priority queues are empty, the
saved solution is guaranteed to be optimal.

B. Parallel Low Level Search - HDA*

Using OpenMP, each core was assigned an open list to
utilize. The first implementation of HDA* is shown in Figure
2. Here, P0 through P3 each expand a node, generating
neighbors. The neighbors are then put through a hashing

function and distributed amongst processors. Note that each
processor can generate work for any other processor, including
itself. When a node is expanded, it may be added to the visited
list, or used to update nodes in the visited list.

A key issue with this approach is the amount of contention.
Open lists are implemented as priority queues to quickly
retrieve nodes with the lowest f-values, so inserting multiple
nodes simultaneously is very difficult. To prevent this, we
employed locks to force mutual exclusion: only one processor
can access the open list at a time. At worst case, a single core
can block every other core from operating. For instance, if
P0 has the lock, and P1 through P3 are trying to push to P0’s
open list, then only one out of four cores are making progress,
significantly impacting performance.

Contention also occurs in the visited list. Each processor
must check the visited list to determine if the node they just
expanded already exists in the visited list, then it may add
to or modify the visited list. Initially, a fine grained lock was
employed on a per-node basis within the visited list: there is no
contention if one core reads a node, and another core updates
a different node. The fine grained lock would simply prevent
a read and write, or multiple writes, from occurring on the
same node. Testing revealed that this approach, while reducing
blocks, produced segmentation faults. While this approach
works with reading and modifying existing nodes, inserting
new nodes into the visited list causes the underlying data
structure to change. Because the visited list is implemented
as a thread unsafe unordered map, no operation can occur in
parallel with node insertion. This posed a significant bottleneck
for performance.

Fig. 3: HDA* redesigned to reduce contention. Yellow blocks
are buffers, and visisted list is partitioned for each core

The new implementation is shown in Figure 3. To reduce
contention, buffers were added to each open list. When a core,
the sender, needs to push to another core’s open list, it will
instead push to a buffer specifically designated for that sender
for that open list. The open list is now exclusively accessed by
the core that owns it, and reading or popping from it requires
no locks. Updating it does still require a lock on the buffer,



however. For instance, P0 may lock one of its buffers to flush it
and update its open list. This will at most block one other core;
other cores can still push to their designated buffers without
issue during this time. Thanks to the buffers, at worst case one
core can only block one other core, rather than all of them.
Note that there is no buffer for a core pushing to its own open
list; it can do so directly.

The contention on the visited list was removed entirely
by partitioning it for each core. The hashing function used
to determine which core gets a node is deterministic and
consistent, which means that a given node will always be
assigned to the same core. Additionally, when a core is
checking the visited list, it is searching for a node it may
have processed in the past, since it is looking for a copy of
the node it is currently assigned. It will never look for a node
that was processed by another core. This allows us to break
up the visited list: each core will have its own visited list, and
there is no need for a core to check or modify another core’s
visited list. This entirely removes the need for locks, further
reducing contention and enhancing parallelization.

C. Parallel High-Level Search

We tried two different approaches for parallelizing the high-
level search. The Constraint Tree of the high level search is a
binary tree, which reminded us of the final two homeworks.
As such, we decided that a good first approach would be to
assign subtrees to separate cores. To achieve this, we created a
priority queue for each thread. Each thread runs Algorithm 1
and only inserts to its own priority queue. The only difference
from the given algorithm then becomes coordinating the
termination criteria which has been previously discussed.

Fig. 4: Subtree assignment used in naive approach. Each color
box represents a different core. Each core is assigned a subtree
and processes all nodes in that subtree.

One important implementation detail is that we have a
warmup period. Cores are only assigned subtrees after enough
exist for each core to have its own. For example, in Figure

4 there are four cores. The first three nodes in the tree are
processed sequentially by a single core before we have four
subtrees that can be distributed across the cores. Not only did
this reduce complexity in the code, but it also significantly
improved performance on MAPF instances where the number
of collisions was low.

Fig. 5: Node assignment used in second approach. Each color
box represents a different core. Nodes are spread evenly across
cores and each core finishes processing a given node before
moving on to its next assigned nodes.

After preliminary testing, we found that assigning subtrees
to cores performed poorly. The main reason behind this was
that the subtree assignment meant that we were not focusing
resources on the lowest cost nodes. Some subtrees only had
nodes with high costs, but the assignment meant that a thread
was still processing those nodes leading to wasted processing
time. Instead, we took a different approach and applied the
HDA* idea of spreading nodes across threads. Figure 5 shows
an example assignment of this improved approach. Instead of
using a hash like HDA* to assign nodes, we assigned new
nodes to the priority queue that had the lowest number of ele-
ments. This helped to distribute the work better across cores.
Additionally, now that we have different threads accessing
each other’s priority queue we have to use locks when pushing
or popping. This was another reason we chose to initially
pursue the subtree assignment strategy. We knew that locks
would be needed if we wanted to spread nodes across cores
and we felt that it would cause a significant speed decrease.
However, it turned out that the benefits gained by spreading the
nodes was significantly higher than the slow down introduced
by the locks. Similar to the previous method, the warmup
period still exists where we process nodes sequentially until
there exist enough to give each available thread a separate
node.

V. RESULTS

The maps used for evaluation are shown in Figure 6. The
maps cover a wide range of different environments, allowing
us to see which types of maps the parallelized CBS performed



Fig. 6: Maps used for evaluation. Left to right: den312d, empty, maze, random, room

TABLE I: HDA* Speedup relative to sequential A*

Map A* runtime (ms) HDA* runtime (ms) Speedup
den312d 237.1 212.2 1.12
empty 24.9 16.6 1.51
maze 580.8 502.1 1.16

random 19.5 16.5 1.18
room 592.3 598.0 0.99

Fig. 7: HDA* multi-core speedup relative to single core HDA*
performance

well and poorly on. All experiments were performed on the
GHC machines using 8 cores unless stated otherwise.

A. Parallel Low Level Search - HDA*

The runtimes and relative speedups of HDA* compared
to A* are shown in Table I. A random MAPF instance
was generated for each environment using 40 agents, then
the median of 100 tests per map was used to represent the
overall runtime for the algorithm. The results showed that
HDA* tended to perform better than A*, averaging 20 percent
increase in performance over all five maps. This is significantly
lower speedup than we had anticipated. Figure 7 shows that
as the number of cores increases, the overall speedup quickly
plateaus, which explains the lower than expected performance.
We analyzed the algorithm and implementation to determine
the root cause: the main lines of investigation were workload
increase, workload balance, and coordination overhead.

1) Workload Increase: Table II shows the number of nodes
expanded in the sequential A* algorithm, and the parallelized
HDA* algorithm. Since HDA* is an exhaustive search al-

TABLE II: Number of Nodes per Algorithm

Map A* HDA* Factor Increase Ideal Speedup
den312d 69567 412653 5.93 1.35
empty 4673 14057 3.01 2.66
maze 195222 926298 4.74 1.69

random 4425 15707 3.55 2.25
room 179490 846236 4.71 1.70

gorithm, it must expand significantly more nodes than A*,
which means its workload is much larger. As a result, the ideal
speedup is not equal to the number of cores: algorithmically,
the workload increases by a factor of 4.39 on average across all
five maps. This limits the ideal speedup to an average of 1.93
across all five maps when using 8 cores. Table II also shows
the ideal speedup for each map, assuming no duplicated effort
or coordination overhead.

2) Workload Balance: The workload balance was also
investigated, as shown in Table III. Of the 8 cores, we noticed
that the first core, P0, tended to have less work than the other
7 cores. P1-P7 had very good workload balancing, remaining
very close to the ideal workload percentage of 12.5%. The
workload balancing is determined by the hashing function: if
the hashing function is biased, then certain cores will get more
work than others. Though the balance could be improved by
giving more work to P0, since seven of the eight cores had
excellent balance, and the remaining core was still contributing
to the overall performance, we determined that the workload
balance was not the primary bottleneck.

TABLE III: Percentage of Nodes Processed by each core

Map P0 (%) P1-P7 Min (%) P1-P7 Max (%)
den312d 8.59 12.84 13.58
empty 9.23 12.64 13.21
maze 8.98 12.76 13.18

random 9.16 12.06 13.58
room 8.18 11.93 13.81

3) Coordination Overhead: Figure 8 shows a visualization
of contention and synchronization across 8 cores during HDA*
operation. Each subfigure shows 8 timelines, one for each
core, showing when that core is blocked. For most of the
algorithm, cores must access each other’s buffers, as well as
check each other’s status flag. Both of these operations require
acquiring a lock, and the block time for these operations are



(a) Halt synchronization

(b) Excessive flag contention

(c) Termination synchronization

Fig. 8: Visualization of contention and synchronization. Col-
ors: red = buffer contention, green = flag contention, blue =
halt synchronization, orange = exit synchronization

shown in red and green, respectively. Once all status flags
are set, a halt synchronization occurs, shown in blue. Once
synchronized, each core must double check that their own open
lists and buffers are empty to ensure completeness. They will
then synchronize once more before terminating the program or
resuming the search; the second synchronization is shown in
orange. Figure 8a shows a case where most of the overhead is
due to halt synchronization. There is very little buffer and flag
contention, so the cores are mostly unimpeded throughout the
search. Figure 8b shows an instance where there is significant
flag contention on top of waiting due to synchronization.
Before the halt synchronization, there is an acceptable amount
of flag contention, and very little buffer contention. However,
after halt synchronization, the algorithm has resumed search
as it determined that it cannot exit yet. Though there is still
work to do, most cores are done or nearly done. Cores that
have finished their work will constantly access the flags of
other cores to check their status, resulting in large amounts
of flag contention. Note that 7 of the 8 cores have significant
contention; one core still has work to do, so it never checks
the flags and therefore has very little flag contention. Flag
contention is not ideal, but it is generally acceptable as a core
will only suffer flag contention if it has finished all of its local
work. While waiting to acquire the flag lock, there is very little
work for it to do, so the contention isn’t blocking a significant
amount of progress.

Figure 8c shows a case that occurs quite rarely. The second
synchronization is typically very quick, as each core checking
their own open lists and buffers requires no locks, and the
checking itself is very fast. However, when an algorithm uses
all the cores on a machine, it’s possible that one of the cores
gets preempted by the operating system. Preemption will force
one of the cores to be far behind the other cores, which will
significantly increase the cost of synchronization. This may
also occur for halt synchronization, but it is most noticeable
with exit synchronization. Also note that this map has large
buffer and flag contention before the first halt synchronization.
This is consistent when running on certain maps. This shows
that buffer and flag accessing is heavily impacted by the nature
of the problem, as some maps will generate nodes such that

contention is more likely to occur.
HDA* was implemented using OpenMP, which uses a

Shared Address Space (SAS) model. SAS models require locks
to avoid race conditions, which results in the blocking and
inefficiency. Implementing HDA* using a message passing
model may have been the better choice: if each core sent nodes
as a message and published their status flag, then there would
be no contention, thus improving performance and scaling with
number of processors. One key weakness of the SAS is the
barrier: when a core reaches a barrier, it must wait for all other
cores, and cannot abort the barrier if too much time passes.
Message passing could also be used as a way around this issue,
as received information could be used to determine if halting
and exiting are appropriate actions.

B. Parallel High Level Search

In our project proposal we stated that we would measure
the success rate of our parallel implementation compared
to a sequential implementation. Our experiment setup was
as follows: for each map and for each implementation, run
the algorithm 10 times with a random set of start and goal
locations. Repeat this with an increasing number of agents
until the success rate is less than 10%. The timeout limit was
set to 1 minute and the algorithm used all 8 cores available.
The results for the 5 different maps are given in Figure 9.
As can be seen from the graphs, the parallel implementation
in orange has a consistently higher success rate than the
sequential method. However, the success rate was not as high
as we initially aimed for.

In order to better understand why this was the case we
also performed another experiment where we compared the
relative speedup gained from using the parallel approach.
For this experiment, we again used a random set of start
and goal locations but fixed the number of agents. For the
den312d, empty-32-32, and random-32-32 maps we used 20
agents. For the maze-32-32 and room-64-64 maps we used 10
agents. These numbers were chosen as they were the points at
which those maps had displayed around 80% success rate. The
timeout limit in this experiment was set to 10 minutes. The
resulting relative speedup is shown in Figure 10. As the results
show, there is an extremely large spread in the relative speedup
but our parallel method is on average 2.23× faster than the
sequential method. Despite this we were still disappointed with
the performance. Looking closer at the data we noticed that
when the run-time was over 1 second, the relative speedup was
significantly larger. Thus, we chose to create a separate plot
where we only considered data points where the runtime was
over 1 second which can be seen in Figure 11. In this case,
the average relative speedup jumps to 4.83× with a maximum
speedup of 6.18× which is significantly higher than before.

One important property of the MAPF problem is that it is
NP-Hard. As a result, some problems can be trivially simple
and take the sequential implementation under 5ms to solve
while other cases can be exceedingly difficult requiring over
50 minutes to solve even for the same map and number of
agents. The run-time is heavily dependent on the configuration



Fig. 9: Graphs showing success rates for all maps. Success rate for the parallel approach with 8 cores is shown in orange and
the sequential approach is shown in blue.

Fig. 10: The average, max, and min relative speedup of our
parallel approach using 8 cores across 10 runs for each map.
The yellow dotted line shows the average speedup across all
maps which was 2.23.

of starts and goals and how many conflicts the optimal solution
contains. The main driving force behind why our algorithm
performs better on problems that take over a second is due to
the warmup period described in the approach section. There
is an overhead cost associated with the initial spreading of
the nodes to the cores so when the sequential warmup period
of the parallel algorithm is a higher percentage of the overall
runtime we typically see poor relative speedups. In general,
more conflicts in the optimal solutions means more nodes
need to be processed which leads to the initial warmup being
amortized and thus leading to a higher relative speedup.

Fig. 11: The average, max, and min relative speedup of our
parallel approach using 8 cores for only runs that took longer
than 1 second. The yellow dotted line shows the average
speedup across all maps which was 4.83.

VI. CONCLUSION

We attempted two approaches to parallelizing the CBS
algorithm, one targeting the low-level and another targeting the
high-level. In our project proposal we set out to achieve a 25%
increase in success rate for our parallel implementation. While
we did not necessarily find this performance improvement
we found that it may have been a misguided target. Instead,
evaluating the relative speedup showed that in the best case
we were able to solve for the optimal solution 6.18× faster
than the sequential method. However, the large variations in
complexity of MAPF problems meant that only occasionally
did we see this performance boost. On average, we were
2.23× faster but could occasionally be slightly slower for very
trivial problems. Overall, we found that targeting the high level
search for paralllelization was more effective than targeting
the low level. Future work could look to implement lock-free



priority queues as these proved to be a significant bottleneck
in our implementations. A message passing implementation of
HDA* should also be evaluated to determine how beneficial
such an approach can be for speeding up CBS.

VII. WORK CONTRIBUTION

Both team members contributed equally, 50%-50%.
Matthew Booker implemented, tested, and analyzed the high-
level parallelization of CBS. Jaekyung Song implemented,
tested, and analyzed the HDA* algorithm.

REFERENCES

[1] G. Sharon, R. Stern, A. Felner, N. R. Sturtevant, ”Conflict-based search
for optimal multi-agent pathfinding”, Artificial Intelligence, Volume 219,
2015, Pages 40-66, https://doi.org/10.1016/j.artint.2014.11.006.

[2] Jiaoyang Li., CMU 16-891: Multi-robot Planning and Coordination
[3] Kishimoto, A., Fukunaga, A., Botea, A. (2009). Scalable, Parallel

Best-First Search for Optimal Sequential Planning. Proceedings of the
International Conference on Automated Planning and Scheduling, 19(1),
201-208. https://doi.org/10.1609/icaps.v19i1.13350


